NASA Is Funding These Mind-Blowing Projects
MIKE LAPOINTE HAS the envious job of figuring out how to get space exploration to the science fiction future. He and his colleagues fund high-risk, high-reward projects as part of the NASA Innovative Advanced Concepts program, or NIAC, which last week announced grants to 14 teams exploring fantastical ideas. Many of them won’t pan out. But some—perhaps the lunar oxygen pipeline or the space telescope mirror that’s actually built in space—could become game changers.
“We’re looking at anything from back-of-the-napkin kind of concepts to things that are conceptualized but not developed yet,” LaPointe says. “These are things looking 20 to 30 years down the road to see how we could drastically improve or enable new types of NASA missions.” For example, while efforts to slightly boost a chemical rocket engine’s efficiency would be laudable, that’s not far out enough for the program. A proposal for a completely new system that could replace chemical rockets would fit right in.
NASA awards these grants annually, mostly to academic researchers in the United States. This new batch of awards is for Phase 1 projects, which each receive $175,000 to conduct a nine-month study that researchers will use to lay out their plans in more detail, run tests, and design prototypes. A promising few will make it to Phase 2 and get $600,000 for a two-year study. After that, NASA will award $2 million to a single exceptional project to fund a two-year Phase 3 study.
Some of the competitors may ultimately find a home at NASA or with a commercial partner; others may have an indirect effect on space exploration by paving the way to spin off technologies. For example, the startup Freefall Aerospace’s inflatable space antenna began as an NIAC project. A NIAC proposal for a rotorcraft on the Red Planet inspired the Martian helicopter Ingenuity.
One of this year’s winners is a proposal to design a habitat assembled from building materials grown on Mars—substances generated by fungi and bacteria. It’s hard to send big, heavy things, like a housing structure, to space. The launch cost is prohibitive, and you have to squeeze it atop a rocket and stick the landing on Mars too. But this project, developed by mechanical and materials engineer Congrui Jin and her colleagues at the University of Nebraska, explores the idea of self-growing building blocks.
These fungi or bacteria start small, but they gradually grow filaments and tendrils to fill the space available to them. “We call them self-healing materials,” says Jin, whose research group has used them to create biominerals and biopolymers that fill cracks in concrete. “We want to take it one step further to develop self-growing materials.”
In a bioreactor on Mars, such materials would grow into sturdy bricks. The process would be costly on Earth, but since the Red Planet lacks concrete and construction workers, it could make more economic sense there. During her NIAC study, Jin plans to determine whether the growing process could be sped up from months to days, and how long the materials could survive in the harsh Martian environment.
It’s not the first time NIAC has funded an experiment aimed at using mushrooms to grow structures in space—a different “mycotecture” project was one of last year’s winners. But this team’s project will focus on using a different aspect of the fungus: the minerals it forms in certain conditions, like calcium carbonate, rather than the root-like threads called mycelia.
Another NIAC winner proposes designing a giant moon-based pipeline that could deliver much-needed oxygen to astronauts on a future lunar base. Thanks to NASA’s ongoing Artemis program, astronauts will arrive as soon as 2026. Longer future missions will require supplies of oxygen that last for weeks or months—and possibly for use as rocket fuel. Ferrying tanks of oxygen to space is just as problematic as launching building materials, but making the gas on the moon could be a better option. Oxygen is available as a byproduct of mining for water ice using a process called electrolysis.